Department of Biological Sciences

Dodge Hall Rm 375
118 Library Dr
Rochester, MI 48309-4479
(location map)
(248) 370-3550
fax: (248) 370-4225
biology@oakland.edu

Blumer Schuette

Sara Blumer Schuette

Sara Blumer-Schuette

Assistant Professor, Ph.D.
331 MSC
248-370-3168
Lab location: 330 MSC
Lab phone: (248) 370-4903
blumerschuette@oakland.edu

Blumer-Schuette Lab Website

Courses:

BIO 1200 Biology I
BIO 3500 General Microbiology
BIO 4511 Microbial Biotechnology 

Microbial Physiology and Genomics

Non-model environmental microorganisms are promising reservoirs of unique metabolic pathways that can be harnessed to replace traditional synthetic chemistry. Professor Blumer-Schuette’s research interests include microbial physiology and genomics of non-model microorganisms living at the extremes of life. Current projects include unraveling mechanisms used by extremophilic microbes to interact with substrates that they require as an energy source. Given the intense competition in microbial biospheres, the ability to efficiently harness energy sources, be they organic or inorganic, is crucial for microbes. Implications for understanding these mechanisms range from outlining how microbial attachment mechanisms have functionally evolved, to the environmental implications of these mechanisms and identifying targets for rational design of commercially relevant microbes. Other research interests include characterizing transport systems used to secrete large (some over 200 kDa) enzymes by monoderm bacteria, and how to optimize secretion efficiency of these systems.  In the Blumer-Schuette lab, students can expect to use a combination of anaerobic and aerobic microbiology, functional genomics, microbial genetics and biochemistry in their research projects.

Selected Publications:

Sara Blumer-Schuette NCBI publication list

Khan*, A.M. Khan, V.J. Hauk*, M. Ibrahim*, T.R. Raffel and S.E Blumer-Schuette. (2020). Caldicellulosiruptor bescii adheres to polysaccharides using a type IV pilin-dependent mechanism. Applied and Environmental Microbiology  Posted online February 21, 2020 DOI: 10.1128/AEM.00200-20.

Khan*, A., C. Mendoza, V. Hauk* and S. Blumer-Schuette. (2019). Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. Journal of Industrial Microbiology & Biotechnology 46: 1251-1263DOI: 10.1007/s10295-019-02222-1.

Mendoza, C. and S.E. Blumer-Schuette. (2019). Complete genome sequence of Caldicellulosiruptor changbaiensis CBS-Z, an extremely thermophilic, cellulolytic bacterium isolated from a hot spring in China. Microbiology Resource Announcements 8: e00021-19. DOI: 10.1128/MRA.00021-19.

Mitchell*, J, S.J. Kim, G. Koukos, A. Seelmann*,   B. Veit*, B. Shepard*, S. Blumer-Schuette, H.S. Winter, D. Iliopoulos, C. Pothoulakis, E. Im, and S.H. Rhee. (2018). Colonic inhibition of phosphatase and tensin homolog increases colitogenic bacteria, causing development of colitis in Il10-/- Mice. Inflammatory Bowel Disease 24(8):1718-1732DOI: 10.1093/ibd/izy124

Lee, L.L., S.E. Blumer-Schuette, J.A. Izquierdo, J.V. Zurawski, A.J. Loder, J.M. Conway, J.G. Elkins, M. Podar, A. Clum, P.C. Jones, M.J. Piatek, D.A. Weighill, D.A. Jacobson, M.W.W. Adams and R.M Kelly. (2018). Genus-wide assessment of lignocellulose utilization in the extremely thermophilic genus Caldicellulosiruptor by genomic, pangenomic, and metagenomic analyses. Applied Environmental Microbiology 84: e02694-17. DOI: 10.1128/AEM.02694-17.

Blumer‐Schuette, S.E., J.V. Zurawski, J.M. Conway, P. Khatibi, D.L. Lewis, Q. Li, V.L. Chiang and R.M. Kelly. (2017). Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microbial Biotechnology 10: 1546-1557. DOI:  10.1111/1751-7915.12494.

Blumer-Schuette, S.E., M. Alahuhta, J.M. Conway, L.L. Lee, J.V. Zurawski, R.J. Giannone, R.L. Hettich, V.V. Lunin, M.E. Himmel and R.M. Kelly. (2015). Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. Journal of Biological Chemistry. DOI: 10.1074/jbc.M115.641480.

Blumer‐Schuette, S.E., S.D. Brown, K.B. Sander, E.A. Bayer, I. Kataeva, J.V. Zurawski, J.M. Conway, M.W.W Adams and R.M. Kelly. (2014). Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews 38: 393-448. DOI: 10.1111/1574-6976

Frock, A.D., C.I. Montero, S.E. Blumer-Schuette and R.M. Kelly. (2013). Stationary phase and nutrient levels trigger transcription of a genomic locus containing a novel peptide (TM1316) in the hyperthermophilic bacterium Thermotoga maritimaApplied and Environmental Microbiology 79: 6637-6646. DOI: 10.1128/AEM.01627-13

Blumer-Schuette, S.E., R.J. Giannone, J.V. Zurawski, I. Ozdemir, Q. Ma, Y. Yin, Y. Xu, I. Kataeva, F.L. Poole II, M.W.W. Adams, S.D. Hamilton-Brehm, J.E. Elkins, F.W. Larimer, M.L. Land, L.J. Hauser, R.W. Cottingham, R.L. Hettich and R.M. Kelly. (2012). Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. Journal of Bacteriology 194: 4015-4028. DOI: 10.1128/JB.00266-12

Blumer-Schuette, S.E., D.L. Lewis and R.M. Kelly. (2010). Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Applied and Environmental Microbiology, 76: 8084-8092. DOI: 10.1128/AEM.01400-10.

*OU student